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The hydrodynamics of Ginzburg-Landau dynamics has previously been proved 
to be a nonlinear diffusion equation. The diffusion coefficient is given by the 
second derivative of the free energy and hence nonnegative. We consider in this 
paper the Ginzburg-Landau dynamics with long-range interactions. In this case 
the diffusion coefficient is nonnegative only in the metastable region. We prove 
that if the initial condition is in the metastable region, then the hydrodynamics 
is governed by a nonlinear diffusion equation with the diffusion coefficient given 
by the metastable curve. Furthermore, the lifetime of the metastable state is 
proved to be exponentially large. 

KEY WORDS: Metastability; hydrodynamical limit; Ginzburg-Landau 
dynamics; Kac potential; exponential lifetime. 

1. INTRODUCTION 

The hyd rodynamic  limit of  G i n z b u r g - L a n d a u  models  has been s tudied 
extensively in the recent l i terature.  Results include, e.g., refs. 2, 3, 7, 5, 13, 
I, and  18. A m o n g  them, the hydrodynamic  limit was done in refs. 2, 3, 7, 
and 18, while refs. 5 and  1 deal t  with large deviat ions and nonequi l ibr ium 
fluctuations (in one dimension) .  In ref. 13, following the approach  of ref. 7, 
the hyd rodynamic  limit was proved for G i n z b u r g - L a n d a u  models  with 
finite-range interact ions at any temperature .  I t  asserts that  the empirical  
field evolves in the hyd rodynamic  l imit  according to the nonl inear  diffusive 
equat ion  

O,u(x, t) = d x [ h ' ( u ( x ,  t ) ) ]  (1.1) 
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where h(z) is the free energy of the Ginzburg-Landau model with specific 
magnetization (field) z. It is well known that h is always convex, but the 
diffusion coefficient h" is zero in phase transition regions. Hence Eq. (1.1) 
becomes degenerate when there is a phase transition. In this paper, we are 
interested in Ginzburg-Landau models with long-range interactions, or 
more precisely, with the Kac potential. The Hamiltonian H= Ho + HL is 
given by 

N 

Ho= ~ V(4j) (1.2) 
j = l  

N N 

HL=�89 ~ ~ J((i-j)/N")r (1.3) 
i = 1  / = 1  

where 0 < a  < 1 and J is a nonnegative function with compact support 
in {Ixl <1/4} and SJdx=l. We shall assume the periodic boundary 
condition so that we are in a finite volume. The dynamics is the usual 
dynamics [see (2.5)], which conserves the total magnetization. Recall the 
definitions of pressure p and free energy h with respect to H0, 

p(2) = log f exp[2,k - V(~b)] dq~ 

h(x)=sup[2x- p(2)] 

Define a new function h by 

(1.4) 

(1.5) 

h(~b) = h(~b) - �89 (1.6) 

Our main questions are: Does (1.1) hold in this case and, if (1.1) holds, 
what is the diffusion coefficient? 

There are two natural choices for the free energy of HL. One is the 
function h defined in (1.6); the other is the convex hull /~ of h. Clearly, 
the second choice means that the result of ref. 13 holds independent of the 
range of the interactions. For the first choice, one should be careful because 
the diffusion coefficient h" can be negative! Let us assume for simplicity 
that h is a double-well potential and define 

m .  = min {~b I (h)'(~b) = 0} (1.7) 

_m = sup {~b [ (h)"(~b) > 0} (1.8) 

Thus the first choice makes sense only when initial data are smaller 
than _m. 



Metastabil i ty of GL Model wi th  Conservation Law 707 

Our  main result is that  the first choice holds for any 0 < a < 1 [with 
a defined in (1.3)] provided that, roughly speaking, the initial conditions 
are bounded above by _m. Unfortunately,  we cannot  prove that the second 
choice holds for some initial data, though it is generally believed to be so. 
Let us describe our  results in more detail. First of all, the condition that the 
initial data are bounded by _m has to be clarified. Since the interaction has 
range N ~ we shall require that any local average of the field ~b in a region 
of size N c~ with some 1 > c > 0 is bounded above by _m. This is important  
because the relevant scale is N ~ and local averages of size N ~ should be 
bounded by _m for the first choice to make sense. In the theorem stated in 
Section 2, c = 1/40. But the method we use can be extended to any c < 1. 

The second important  point is the lifetime that (1.1) holds. The usual 
hydrodynamic  limit concerns the time scale t ~ N  2. If on the other 
hand one fixes N and lets t ~ oo, one obtains the invariant measure 
d # = e x p ( - H ) .  Let us assume that the total specific magnetization 
~ = N  -1 ~ j ~ j = m  lies between m .  and _m, namely, m . < m < _ m .  Then the 
invariant measure is d#,, = d# 6 ( ~ =  m). The state d/~,, describes a mixture 
of pure states with magnetization m .  and m * = m a x { ~ b l ( h ) ' ( ~ ) = 0 } .  
Certainly m * >  _m and the condition that local averages of ~b are bounded 
by _m can no longer hold. Therefore, one does not expect (1.1) to hold 
forever. A reasonable conjecture is that the lifetime is exp(const �9 N"). Again 
we cannot  prove such a strong result, but we are able to prove the lifetime 
is exponentially large. 

What  we have described above is usually referred to as Lebowitz-  
Penrose ~9) theory. Our  results can be summarized as proving that 
metastability occurs as long as the interactions have range N ~ with any 
a > 0 and, furthermore, the lifetime of a metastable state is exponentially 
large. Similar results for the Kawasaki dynamics (for the Ising model with 
Kac potential) were obtained in refs. 8 and 15. Their results are stronger 
in the sense that they dealt with the infinite-volume problem. They did not, 
however, establish the exponential lifetime and they were restricted to the 
case when the parameter a in (1.3) is close to one. 

Both results of refs. 8 and 15 and this paper deal with conservative 
dynamics. If one is interested in the nonconservative dynamics, there are 
extensive results on metastability for Ising models with short-range 
potential or Kac potential. We shall not  discuss these results, as they 
are not directly related to this paper. We refer to, e.g., refs. 14, 16, and 6 
for some recent results. 

This paper is organized as follows. In Section 2 we state our main 
results. We then prove large deviations for short-range models in infinite 
volume in Sections 3 and 4. This extends results of ref. 5 in a certain sense 
and uses ideas from ref. 1. In Section 5 we extend these results to long- 
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range models and prove our main results. Finally, in Section 6 we review 
and extend Fritz's argument ~ to control entropy productions of finite- 
volume systems which was used in Sections 3-5. In the Appendix, we 
collect some results about Eq. (1.1) and its generalizations which we need 
in the text. 

2. S T A T E M E N T  OF M A I N  RESULT 

Let q~j e R, j = 0, 1 ..... N, satisfy the SDE 

dq~j = NZ(AOH/Ofb) j  dt  + N ( d 3 j +  , - d3 j )  (2.1) 

where H = Ho + HL with 
N 

Ho = ~ V(~j) (2.2) 
j=l 

N N 
I --a H L = ~N ~ ~.. J((i--j)/N") (~,qkj (2.3) 

i = ;  j = l  

We shall assume the periodic boundary condition, namely c u = ~ o ,  etc. 
Here 0 < a <  1 and J is a nonnegative function with support in {Ixl < 1/4} 
and ~ J = 1. The Laplacian (,dA)x is defined as 

(AA)j = A (j  + 1 ) - 2A (j) + A ( j -  1 ) (2.4) 

Alternatively one can describe the dynamics (2.1) by its generator.. Let L be 
the symmetric generator characterized by 

- ~  f L f  dll = N2D( f )=  N 2 Z Di, J+ , ( f )  
J (2.5) 

D,=  Dj, j+ , ( f ) =  f (OO-~j Of Ofkj+ l) 2 d# 

where d/~ is the Gibbs measure (with periodic boundary condition) 

d# = e-  n/Z (2.6) 

Denote by f,(~b) the density at time t relative to the measure d/z. Then one 
can characterize (2.1) by 

O,f, = Lf, (2.7) 

We shall assume in this paper that V is of the following type: 

l + m  2 
V(~) = ---5--- ~ + ~(~) (2.8) 
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with m > 0 and ( a bounded function with 

ICI o~ + I~'1 ~ ~< ~o (2.9) 

for some constant  ct o. 
Let co be a nonnegative function with suppor t  in {[xl < 1/4} and 

S oJ = 1. Define oga by 

og~(x) = N j - ~Og(N t - ax) (2.10) 

Let v~ N) be the empirical measure associated to (b, namely 

N 

v ( m = N  - '  ~ (b j6 ( j /N- z )  dz 
j = l  

(2.11) 

In other words, for any test function J, 

N 

<J, v~m>=N -1 ~ J(j/N)(b] 
j - I  

Define o9 �9 (b by 

(o9 * ( b ) ( x ) =  (o9 * v~N))(x) 

(2.12) 

(2.13) 

F rom now on we shall identify (b with v~ N) whenever it is convenient 
without further explanation. Also, we shall drop  the index N. 

Strictly speaking, o9*(b (or o J ,  OH/O(b) as defined in (2.13) is a 
measure. It is convenient  to interpret o9 �9 (b as a density, namely 

(co * (b)(x) = N - l ~. w(x- -  ffN)(bj 
] 

It is also convenient  to define 

(2 . tY)  

(b(X)=r I (2.14) 

where [ a ]  = s u p { n e  }', n < a } .  Note  that with our convention (o9~, (b)(x) 
is an average of (bj with l J -  Nxl < N ~. 

Recall the definition of pressure p and free energy h, 

p(2) = log ~ exp[;t(b - V((b)] d(b 

h(x) = s u p [ 2 x -  p (2) ]  
2 

(2.15) 
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Clearly, these quantities are defined with respect to the free Hami l ton ian  
Ho. Denote  by the function 

h(~b) = h(~) - �89 z (2.16) 

For  simplicity, we assume that h is a double-well potential. Let _m be the 
point 

_m = sup {~b I (h)"(~b) > 0} (2.17) 

Theorem 1. 

(i) 

(ii) 

Suppose the initial data  ~b for the SDE (2.1) satisfy: 

sup(c% �9 ~OZ)(x) < C~ for some constant  C~ and for all 6 >f a/40 
x 

(2.18) 

There is a continuous function v(x) such that  v < _ m - e ,  and 

sup I v ( x ) -  (o96 * ~0)(x)l < N -G6 (2.19) 
x 

for some a > 0 and all 6 >1 a/40. Let u be the solution of the nonlinear 
diffusion equat ion 

Ou 
~--7 = (~(u) )xx  

u(t = O, x) = v(x) 
(2.20) 

Then there is a constant  e > 0 so that for any constant  b > 0 and any ~ with 
a/40 < 6 < 1 

Pq' {sup sup 1(o96 * ~b)(x, t ) -  u(x, t)l > b} < e x p ( -  N ") (2.21) 
.x" O <~ t < e x p (  N ~/4 ) 

Theorem 1 is the main result of this paper.  Our  main tool for proving 
Theorem 1 is the H _ I  norm method of ref. 1. It will be extended to give 
large-deviation bounds for short-range models in Sections 3 and 4. We 
shall then extend these results to long-range models and prove Theorem 1 
in Section 5. For  the rest of this section, we introduce some notat ions and 
a few preliminary comments .  

Let us modify the Hamii tonian  H by /4 in the following way: 

ISI= H +  H ' =  H s +  HL 

H '  = N ~ ~ g ( ~ )  (2.22) 

G 
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Here a indexes the disjoint box of size N'  [~ = a/20 with a defined in (2.3)] 
and 0~. is the average of ~ in the box a. The function g is chosen so that 

h " = h " + g " -  I > C z > 0  

g(x)" >t 0 for all x, g(a) = 0 for 

I g l ~ +  Ig'l~ ~<~, 

for some constant c 2 and ~x. 

x < m - ~ t/2 

(2.23) 

(2.24) 

(2.25) 

With the Hamiltonian H, we can define the dynamics reversible with 
respect to H by replacing H in (2.1) by H. Let A denote the event in (2.21) 
with b ~<e,/4. Clearly, when restricted to the event A c, the dynamics (2.1) 
is identical to the new dynamics with H replaced by H, since H '  = 0  on A c. 
Hence, if we can prove (2.21) with respect to the dynamics generated by H, 
we conclude (2.20) for H as well. The Hamiltonian / t  has the advantage 
that the diffusion coefficient /~" is strictly positive in (2.23), which is not 
satisfied by h". For the rest of this paper we shall be concerned only with 
the modified Hamil tonian/~ and prove Theorem 1 for 2q only. 

The following notations will be used throughout this paper. 
Let Ks be the kernel defined by 

0~--' 
K~(x, y ) = - - - ~ e x p [ - ~ l x -  yl -O(~x) -O(~y)]  (2.26) 

Here ~ is a small constant and 0 is a smooth function with 0(0)= 0 and 
O(x) = Ixl for x large. Define the norms 

I u(x)2 e-2~ dx (2.27) Ilullo 

Ilull 2_,= I f u ( x )  u (y )K~(x , y )dxdy  (2.28) 

Denote the corresponding inner product by ( . ) o ,  ( )  - t. For convenience 
of later reference, we list here some properties of K: 

O~ K(x, y) = - 6(x - y) exp[ - 2 0 ( e x ) ]  + ~2[1 + U(x, y)]  K(x, y) 

(2.29) 

U(x, y) = O'(y) sign(x - y) + O'(y)" - O"(y) (2.30) 

(NZ/tyK)(x, y) = - 6(x - y) exp[ - 20(~x)] 

+ ~2[1 + U(x, y) + O(1/N)] K(x, y) 

+ s(x, y) exp[ - O(ex) - 0(ey)] (2.31) 

Here s is defined by 

s (x ,y )= - ~ N [ 1  - N I x - y l  + O ( l / g ) ]  l ( l y - x l  < N  - l )  (2.32) 
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3. KEY E S T I M A T E  

Our goal in this section is to prove a large-deviation bound for short- 
range Ginzburg-Landau models in infinite volume. For the rest of this 
section, we shall concern ourselves only with (2.1) with H = H  o and V 
given by (2.8) and (2.9). Our results can be extended easily to models with 
short-range interactions and the function V need not be of the special form 
given by (2.8) and (2.9). We shall content ourselves with the simplest case 
in order to focus on the main ideas. In the next section, these bounds will 
be extended to long-range models. 

Let us first review the role of the H_  ~ norm in proving the uniqueness 
of the nonlinear diffusion equation. Let J be nonnegative function with 
S J ( x )  dx  = 1. Let b be a smooth function satisfying for some e > 0, 

e - l >  inf b '(x) > 1 + e  (3.1) 
x ~ R  

Let u and v be two solutions to the equation 

a , w =  [ b ( w ) -  J ,  w]~x, w(t = 0 ) =  Wo (3.2) 

The following lemma shows that the H_~ norm of u - v  is a contraction. 
More precisely 

Lemma 3.1. 
small enough, 

There exists a constant C such that for ct in (2.26) 

d 
dt I lu -v l l~ ,  < - C l l u -  vllo z (3.3) 

ProoL By definition of II ' ll- 1, 

d 
a-7 l l u -  vii2,  = (x, v) 

• [ b ( u ( v ) ) - b ( v ( y ) ) - J ,  ( u - v ) ( y ) ]  d x d y  (3.4) 

By (2.29), O~.K=(x, y )  has two main terms. Let us denote the corresponding 
contributions by I2 i, i =  1, 2. By definition I21 is equal to 

I21 = - r (u - v ) ( x ) [ b ( u ( x ) )  - b (v (x ) ) ]  e-2~ dx  
, 1  

t" 
+ J (u -- v ) ( x ) [ J  * (u -- v ) ] ( x ) e  - 20(~_~) dx 

- W I + W 2  (3.5) 
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From assumption (3..1), we can bound WI by 

W I ~ - - (1  -~- e)IIU - -  /)112 (3.6) 

By the Schwartz inequality, W 2 is bounded by 

wz <~ �89 I lu -  vLI o 2 + �89 IIJ * (u - v)ll ~ (3 .7)  

By definition of 0, we have II0'll ~ ~< const and hence the last term in (3.7) 
is bounded by [ l+cons t (~ ) ] l l u -v l l~ /2  with const(a)--*0 as a--,0. 
Combining (3.6) and (3.7), we have proved that 

/21 < -e /2  I l u -  Vl[o 2 (3,8) 

provided that c< is small enough. 
We now bound 02. By definition 

/22=ot2(u--/), b ( u ) - b ( v ) -  J * ( u - v )  )_l  

+ c< 2 f f  (u -- v)(x) U(x, y) Ks(x, y) 

x [ b ( u ( y ) ) - b ( v ( y ) ) - J *  (u -v ) (y ) ]  dxdy (3.9) 

It is easy to bound [22 by 

/22 ~< ~z const(e)I lu-  vllo 2 (3.10) 

Here we have used (3.1). By choosing c< small enough, we conclude (3.3) 
from (3.8) and (3.10). I 

Lemma 3.1 can be extended to the SDE (2.1) in infinite volume in the 
following sense. 

L e m m a  3.2. Suppose n(x, t) is the solution to the equation [with h 
defined in (2.15)] 

O,n(x, t)=h'(n(x, t))xx-OxOxh'(n(x, t)), n(x, t=O)=no(x) (3.11) 

where no is the initial condition satisfying 

Ilnollo2 ~< co (3.12) 

Assume that h' satisfies that for some r/> 0 the bound 

ov > q - t  > h ' > q > 0  (3.13) 
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Let o9 = oga be the characteristic function (normalized) 

og(x) = �89 1-~ l(Ixl ~<N a - l )  (3.14) 

where 6 is a positive constant less than 1. Define G, and Gz by 

Gi=~gi(x)e-2~ i = 1 , 2  

g,(x)  = 1 - [o9 * (ok 3H/a(~)](x) + (09 * ~b)(x)(o9 �9 OH/3fb)(x) (3.15) 

g2(x) = [o9 * OH/O~-h'(o9 * ~b)]2(x) (3.16) 

Define O and dM by the equation 

�89 I1~ - nil ~,  (t) = O(t)  dt + dM(t)  (3.17) 

where dM is the Martingale part. The there is an l(t) depending on Co, 
ct in (2.26), and ( in (2.8) such that for ct small enough (n~=-Oxn) 

O(t)~< -C11Lo9 * (~b- n)[Io2(t) 

+ C 2 ( G l + G z ) ( t ) + C 3 ( t ) N a - l [ l + l l n x l l ~ ] ( x )  (3.18a) 

if II~bllo(/) < l(t) and 

~"~(t) ~ - - C  4 I1~11o 2 (3.18b} 

if tt~bIto(t)>/l(t). Here C,- are positive constants. Furthermore,  the quadratic 
variation of dM satisfies the bound 

(dM)Z(t) <<. CsN-'II~b - nllo2 (t) (3.19) 

The main estimate of Lemma 3.2 is (3.18a). The bound (3.18b) simply 
provides a cutoff for the large field. Compared with (3.4), there are two 
more correction terms in (3.18a). The last term of (3.18a) is negligible as 
N o  oo. The term with G, and G2 is order one, but it involves only fluctua- 
tions. More precisely, Gl and Gz are negligible if the density f ,  is a local 
Gibbs state. Following ref. 7 or ref. 1, this can be done via a Dirichlet form 
estimate (see Lemmas 3.4-3.6). Finally we remark that the constant 1 in 
(3.15) comes from the quadratic term in the Ito calculus and does not 
appear in the setting of differential equations in Lemma 3.1. 

Proof. We shall omit the index ct on K. 

Step 1. By Ito's formula and integration by parts, O = 0 ,  + 0 2 + 0 3 
with 

Oj = ~I (fb - n)(x)(N2A:.K(x, y))(OH/O~k)(y) dx dy (3.20) 
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I22 = - If  (~ -- n)(x) O~K(x, y) h'(n(y)) dx dy (3.21) 

K i _ 1 ~ [  ( _ ~ , i ~ _ 2 K [ i  i+I 'X [ i + l  iN1.) ] 
I23-2 i N /  ~ , - - - ~ - ) +  K[ _~ , (3.22) 

Here and for the rest of this section, all summations for i and j are 
summing over all integers. Also, dM is equal to 

d M = N - 1 2  I (~k-n)(x)(NV.vK(x,j/N))dxdfl(j/N) (3.23) 
J 

We can compute 0 3 by 

I23 = N -  1 ~ e-ZO~,i/m + O(N- l ) (3.24) 
i 

The quadratic variation of dM can also be computed:  

~< const �9 N -  11[~ - nlrg (3.25) 

Here we have used the Schwartz inequality in the first inequality. This 
proves (3.19). 

Step 2. We now bound ~1.  Let us first use (2.30) to write ~1 as 
~ = [24 + f25 + O(1/N) with 

I24 = -- f (~ -- n )(x)(OH/O(~)(x) exp[  -- 20(~x)]  dx (3.26) 

f25 = c~2 f l  (~b - n)(x)[1 + U(x, y ) ] - K ( x ,  y)(OH/O~)(y) dx dy (3.27) 

It is not hard to see that one can replace (~b-n) (x)  by 09 �9 ((b-n)(x) and 
(dH/d~)(x) by (co * 3H/O(~)(x) in I25 with small error. More  precisely, 
let /27 denote 05  with (~b-n)  and dH/O(~ replaced by c o , ( ~ b - n )  and 
co, aH/d(~, respectively. Then by simple computat ions and the Schwartz 
inequality one has the bound 

[ ~"~5 - -  ~'~7 [ ~ const �9 g 2(/i - 1 ) [  II ~ - n II ~ + IlOn/0(~ll o 2 ] 

~< const .N2ta-  ~q:lI~b- nllo2 + 1 + tlnllo 2] (3.28) 

822/74/3-4-17 
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Here t5 is the constant  in (3.14) and we have used the bound laH/a~l (x) ~< 
const - I - I f f -n l  + Inl + 1] (x)  in the last inequality. 

Next  we replace (~-n) . (cgH/d~) in  004 by 09, (~--n) .(09,3H/c'~)  
and denote it by 006- By definition of G~ and (3.24), 

~'~ 4 ~" - -  at-~ 3 "4- G 1 "Jr" ~'-~ 6 "}- ~"J 8 -I" ~'~ 9 -It- O (1/ N ) (3.29) 

where 00 s and 009 are defined by 

008 = I { [09 * (~ 3H/t3~b)](x)- [~b 3H/3~](x)} e x p [ -  20(ctx)] dx (3.30) 

009 = I {n(x)(c~H/Ofh )(x) - (to �9 n)(x)(09 * 3H/tg~ )(x) } exp[  - 20(ctx)] dx 

(3.31) 

Since o9 has range N ~- 1 and 0 is smooth,  008 can be bounded by 

00s ~< cons t .  N 2~ - 2[ II ~ II ~ + 1 ] (3.32) 

Here we have used (2.8) and (2.9). Similarly we can b o u n d / 2  9 by 

0 0 9 ~ < ( I n - 0 9 * n l ,  l a H / a ~ l > o +  I09,nl ,  10H/a~--09 - ~ / o  

~ g  1 - '  tl09, n - n l l g + N  ~-111an/a~ll~+N 6- '  1109 * nllo 2 

+ N 1 - ~ I lan/a~ - 09 �9 an/a~l lo  2 

<<.const.Na-~[lld/llg+l+llnllg-I+Nl-'l109*n-nllg (3.33) 

By the Poincar6 inequality, 1109,n-nllg<~N26-Zllnxllg. Hence 00 9 is 
bounded by 

009 ~< cons t .  N ' -  111 + II ~11 o 2 + IIn II o 2 + Ilnxll o2"1 (3.34) 

Let us summarize  what  we have proved so far: 

d l l r  nil2_1 -...< 002 + 006 + 007 + G 1 + const(N)  N ' -  ~[1 + [[nxllo2 + I[r + d M  

(3.35) 

Here we have used L e m m a  A.1 to bound linll~(t) by const(t)llnllo2(0) and 
adsorbed it into the constant  term. 

Step 3. In step 2 we have replaced ~ .  c3H/d~ by (09 * ~). (o9 �9 c~H/c~) 
and showed that  the error  is essentially GI.  Our  goal in this step is to 
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replace to * OH/O~ by h ' ( t o ,  ~b) and show that the error is essentially 
bounded by G2. Let us define 12~o and O H by 

0 , 0 =  --(o9 * (q~-n),  h'(to * ~ ) )  (3.36) 

o , ,  = ~2 I~ l,co �9 (~ - n) ] (x) l ,1  + V(x, y) + O(1/N)] 

x K(x, y) h'(to * q~)(y) dx dy (3.37) 

By the Schwartz inequality, the differences O ~ o - O  6 and O 1 ~ - 0 7  can be 
bounded as l-with ~ denoting the constant in (2.26)] 

1~['~10--O6[ "~ [O11--O71 ~ 0~ [[to * (q~-n)ll2o+a-lG2 (3.38) 

We have thus proved that 

d i l l - n i l e 1  ~< {012+013  + G1 +c~-lG2 

+ c o n s t  .N  ' - 1 .  [1 + Ilnxllo2+ 11~11o2]} dt+dM (3.39) 

where O12 and O13 are defined by 

1212 = I~ (o9 �9 (~ - o9 �9 n)(x) O~K(x, y)l-h'(to * ~ ) -  h'(to * n ) ] ( y )  dx dy 

(3.40) 

O , 3 - -  ~ Ilto * ( ~ -  n)llo 2 (3.41) 

Note  that O~z is similar to the right side of (3.4) with J =  0. Hence the 
same argument yields that 

O12 ~< - I n  - c o n s t  .~]  Ilo9 * ( ~ -  n)llo 2 (3.42) 

This proves (3.18a) provided that c~ is small enough. 

Step 4. We now suppose II~ll~](t)>/. By definition of H, 04  is 
bounded by 

04 = --(q~, 3HI3~ )o + (n, OH/Oq~ )o 

~< - c o n s t  �9 [[~[[ o 2 + const - ([~1, 1 )o + e-l[[n[[ o 2 + a [[ dH/d~ ][ o 2 

~< - c o n s t  - II ~ II ~ + ~ - '  II n I] ~ + const (3.43) 

Here we have used the Schwartz inequality in the second inequality with 
sufficiently small. Since [[n][~(t) ~< const(t)[[n[[o2(0) by Lemma A.1, we can 
choose l large enough so that 

04  ~< - c o n s t .  II~l[o 2 (3.44) 
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provided that II~llo~ > l(t). It is not hard to prove that f2~ is bounded by 

f25 ~< const - ~ 2 [ II ~ 11 g + 1 ] (3.45) 

By choosing a small enough, 125 can be controlled by 04.  This proves 
(3.18b). II 

Using the exponential Martingale, one can easily reformulate 
Lemma 3.2 as follows: 

L e m m a  3.3.  Under  the assumption of Lemma 3.2, we have for 
6 <  1/2 and y <  1 

E~' [exp { �89 [ ll(~-nll2_,(t)- ll(~-nll2_l(O) 

+ const" I~ll~llo 2 l(ll~ll2>~l(s))ds]}] 

~< const .  E* [exp  {const .  ~N '  I~ (G,+G2)(s)l(llq~ll2o(s)<l(s))ds}l 
(3.46) 

Here the const depends on t. 

Proo f .  Let ~, be defined by 

~, = Y N6 II~ - n II 2_1 (t) -- ~N 6 ]J~b - n I[ z-i (0) 

fo ~2N2' ['(dM)2(s) (3.47) - yN ~ 12(s) ds--~ ,o 

where 12 is defined by (3.17). Then exp[~,]  is a Martingale and hence 

E[exp{~ ,} ]  = 1 (3.48) 

By Lemma 3.2, ~, is bounded by 

~,/> Y N6 I1~ -- nil 2_1 (t) - yN a I1~ - nil 2_ 1(0) 

f2 - - c o n s t . ~ N  6 (a, +a~)(s) l(ll~llo(S)<l(s))ds 

+ c o n s t ' ~  'N~ II~llg l(ll~llo(S)>~l(s))ds 

+ const .~N ~-1 [1 + Ilndg](s)ds 

+cons t -y2N2~- I  [11~11o2+ [Inllo2](s) ds (3.49) 
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Here we have used (3.18a) and (3.18b) for I2 and (3.19) for (dM) 2. By 
L e m m a  A.I, S~ IInxll2(s) ds is bounded.  Together  with the fact that  Ilnllo 2 is 
bounded,  the last three terms of (3.49) are bounded by 

c o n s t . ( ? N ~ - ) , 2 N  26-~) 11~ll~l(ll~ll2o(s)>>.l(s))ds 

+ const �9 (72N2~- l + ~,N2~- t ) (3.50) 

Here the constants  depend on l and t. Recall that  by assmption 3 ~< 1/2. 
Hence for N large we have 

(t/> V N~ limb - nil 2_ i(/) - -  ?N 6 I1~- nil 2 ~(0) 

f2 - c o n s t . y N  ~ (G, +G2)(s) l(ll~ll2(s)<~l(s))ds 

+ c o n s t ' ~ N  ~ II~llg(s) l( l l~llg~>/(s))ds+const(~ ') (3.51) 

L e m m a  3.3 follows from (3.48), (3.51), and the H61der inequality. I 

Remark. The "constant"  l actually depends on t. But since all our  
arguments  in this paper  will be carried out for t fixed, one can always 
replace l(s) by supo< ,< ,  l(s) or info<s<, I(s). From now on, we will treat 
l as a constant  independent  of time. 

The right side of  (3.46) can be bounded  by the Por tenko  lemma/17~ 
We state it as follows. 

Lemma 3.4. For  any nonnegat ive function G let p be defined by 

p =  sup sup E r G(s) l(ll(~llo(s)<l)ds (3.52) 
O<~t'<~t I1<:110 < I 

Then 

E~ [exp {I~ G(s) l(llqbllo(s)<l)}]<~(l-P)-' (3.53) 

Remark. L e m m a  3.4 is slightly different from the Por tenko  lemma in 
ref. 17. The characteristic function l ( l l~l lo(s)<l)  makes  it possible to 
include the condit ion II~ II 0 < l in the definition of p. 

Finally we have to bound p. Let f ,  satisfy (2.7) with initial condition 
a 3-function of a configuration ~. By the theorem of ref. 10, the ent ropy of 
f ,  s(f,) in (6.11 ), is bounded for t = N - 2  provided that  II ~ll o 2 ~< const. Also, 
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it is easy to check that Er ~cons t  for O<~T<~N -z. Hence for G 
satisfying 0 ~< G ~< const �9 ~N ~ I1~11 o 2 we have that 

p ~< const- yN ~-z + u (3.54) 

u =  sup sup E f G(s) l(llq~llo(s)<l(s))ds (3.55) 
s ( f )  <~ const 0 ~ < t ' < ~ t  

In the application we have in mind, 7N a- 2~ 1. So we need to decide, say, 
when u < 1/2. We follow the approach of refs. 7, 3, and 1 and estimate u 
by the Dirichlet form. More precisely, let f, .j  be the marginal of f ,  on 
I - j ,  j ] .  Then by Theorem 6.1 the Dirichlet form of f ,  is bounded in the 
sense that 

~ i~ i  ~o EU [(OJ-  O; �9 1 )r ~.jJ12r ~.j (3.56, 

for some constant q. The constant q is of order 1 here. and is not important. 
In Section 4, it will be of order g a for some a > 0. 

Let us assume now G is either 7NalG~I or yNaG2, which is our main 
interest. Consider the eigenvalue problem (i = 1, 2) 

e,i(b,y,N,~,y)= sup {~N6f lgil(x=O)hdlay 
h>~0, Ihau= t 

-bN2-aq - '  ~, f [Oi-O,+,)h]2h - '  dlaj} 
- - N 6 ~ j < N  6~ 

Here d#y is the canonical Gibbs state defined by 

(3.57) 

tJl ~ N6 1 + 2N a ~ ~ j -  y normalization 
Ij l  ~< N ~ (3.58) 

Let ~,(b, y, N, 6) be the sup of ei(b, ~,, N, 6, y) over all possible y, namely 

ei(b, y, N, 8) = sup e~(b, y, N, 8, y) (3.59) 
y 

By (3.56), one has ( i=  1, 2) 

~N ~ G,(s)f(s) as d.  <. ~,(b, ~, N, ~) + S(fo)/b (3.60) 

Note that (3.60) follows by averaging (3.57) with respect to x weighted 
by e x p [ - 2 0 ( e x ) .  Strictly speaking, (3.57) is independent of x. Hence a 
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translation of x on the right side of (3.57) is understood when averaging 
w.r.t, x is taken. 

We now summarize what we have proved as the following result. 

L a m i n a  3.5. The constant u~ (with G=yN6IGil) is bounded by 

ui <~ gi(b, ~, N, 6) + s(fo)/b, i = 1 , 2  (3.61) 

Finally, we have to decide when 8,. is small. 

L e m m a  3.6. Suppose that q is bounded by 

q ~< N 2-e (3.62) 

for some e > 0. Then for 

we have that 

t5 ~ e/5, ~ ~ N -3~/4 (3.63) 

ei(b,~,,N, 6)--*O as N ~ o o  (3.64) 

for any constant b. 

Proof. Let 6 = e/5 (6 < e/5 is similar). Hence 

8i(b, ~, U, 6, y)=bN 36 sup {~,b-lU -za I [gil(x=O)h d#y 

-NZ'~ Z f [(Oj-as+,)h]Zh -' d#y} (3.65) 
_ N 6 < ~ j < N , ~  �9 

By the logarithmic Sobolev inequality for the product measure, ~u'tz) we 
can replace the Dirichlet form by the relative entropy to have an upper 
bound. Hence 

8~(b, ),, N, 6, y) <<.bN36 sup {),b-t N-2~ f lg;l (x=O)h dlay-const.S(h/l~y)} 

(3.66) 

where the entropy S is defined in (6.8). By the entropy inequality (6.7), 8; 
is bounded by 

ei(b, ~,N, 6, y)~bN361og f exp{const.~b-lN-Z~lg;l(x=O)} d#y (3.67) 

This integration was studied in ref. 1 and it was proved that 

8~(b, ~, N, 6, Y) ~< const,  bN36[~b-IN-2~-613 + (~b-IN-2~)z] (3.68) 
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Granting this bound, we have that e; ~ 0 is N ~ oo provided that y satisfies 
(3.63). This proves (3.64). 

We now return to sketch the proof of (3.68), which is elementary but 
somewhat lengthy. ") Let us first assume that g~(x = 0) is bounded. Then by 
expanding the exponential up to second order we have that the expectation 
is bounded by (up to the second order) 

1 + const .yb-~N -2'~ I Igel ( x =  0) d/~y + const- (yb-lN-26)  2 (3.69) 

It suffices to show that 

f lg~l ( x = 0 )  d/~,. < const "N -~/3 (3.70) 

Let d/~ be the product measure with the chemical potential 2 instead 
of the constraint y. Certainly, ;t is chosen so that the expectation of 
(1 +2N6) - l  ~ s  is equal to y. 

A strong form of the equivalence of ensembles states that 

I g dl.ly- l g dl.l;, ~cons t .  Ilgll~oN -6/z (3.71) 

Since gi(x = 0) satisfies that 

I lgil (x = O) dg,~ <~ const �9 N -'vz (3.72) 

we have thus proved (3.70). To complete this argument, one has to perform 
cutoff for large g; and prove the equivalence of the ensemble bound (3.71). 
The equivalence of the ensemble (3.71) was proved in ref. 1, while the cutoff 
for gi is very straightforward since gi is quadratic when ~ becomes large. 
We omit the details. II 

Combining Lemmas 3.3-3.6, we have the following two corollaries. 
Corollary 3.7 is a statement of large deviation. 

C o r o l l a r y  3.7. Suppose that (3.55) holds for g<~N 2-e for some 
e > 0 .  Let 6=e/5. Then for r satisfying 1lr one has 

E ~' [exp{ �89 6/4 limb - nil z ,(t) } ] ~ const(t) (3.73) 

Here n is a solution to (3.11) with no= q,. 
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C o r o l l a r y  3.8, Suppose that ~k satisfies 

11@112_ ~ ~< const  

Then for 1 large enough 

Eg'[exp{�89 ll~llo2 l(ll~llo > l) ds}]  ~< exp(const �9 N) (3.74) 

4. LARGE-DEVIAT ION B O U N D  FOR S H O R T - R A N G E  M O D E L  

In this section we shall prove Theorem 4.1, which is similar to 
Theorem 1, but in the context of short-range models. Our setting will be as 
in Section 3, except we are now in finite volume. This assumption is only 
used in Lemma 4.2 to provide some simple cutoff without too much work. 
Roughly speaking, our main result can be described as follows. In ref. 5 the 
large deviation for Ginzburg-Landau models was proved. Their result, 
however, covers only "small macroscopic regions," namely, for the average 
of the field ~j- with i J -  il < N6 and 6 small. If one is interested in a region, 
say, I J - i [  < N" for some a >0,  then no conclusion can be drawn from 
ref. 5. The following Theorem 4.1 provides such a bound in a rather strong 
sense. Throughout this section, our dynamics is governed by (2.1) with 
H =  H 0. Recall that co is a smooth function with compact support and co o 
of (2.10) has support in {xl Ix[ ~<N ~- 1}. We now state the main result of 
this section. Note that co~_~(x) in the theorem has support in Ixl ~ N -e, 

" T h e o r e m  4.1. Suppose that the initial condition ~k satisfies that: 

(A) There is a smooth function Uo(X) such that 

sup lu0(x)- (col -~  * ~b)(x)l < N -~(1 -~) (4.1) 
x 

for some 0 < e <  1 and 0 < a <  1. 

(B) 

[1~11o ~< const (4.2) 

Let u(x, t) solve (3.11). Then there is a ~ > 0 such that 

Er sup sup [u(x, t) - (col-~ * ~)(x, t)[ > N -y ] < exp(- -N ~) (4.3) 
O<t<cxp(NT/4)" x 

We start our proof with the following Lemma 4.2, which provides 
basic cutoff for large r Lemma 4.2 is the only place we use the finite- 
volume assumption. 
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L e m m a  4.2. Suppose the initial condition satisfies (4.2). Then for 
C1 > 0 large enough there is a C2 > 0 such that 

E*{ sup 11~l12(t) > C2} < e x p ( -  C~N) (4.4) 
0 < t < e x p ( c o n s t ,  N)  

Proof .  First of all we claim that (4.4) holds if the dynamics starts 
from the equilibrium. This has been proved in the proof of Lemma 6.1 of 
ref. 7. To extend (4.4) to nonequilibrium, we note that (4.4) holds if the 
initial density f satisfies S f2  d/z ~< exp(const �9 N). But a simple extension of 
the theorem of ref. 10 shows that the density of the system f ,  satisfies 
that Sf2,  d # < ~ e x p ( c o n s t . N )  for t = N  -2. It remains to prove (4.4) for 
0 < t <~ N-2. But this is just an elementary application of Ito's calculus. 1 

L e m m a  4.3. Suppose that the initial condition ~b satisfies 
11~'112-1 < C for some constant C. Let TI be the first hitting time of 

A t =  {ll~[Ig<l} (4.5) 

Then for I large enough 

E r [~t > 1/4] < exp( - const �9 N) (4.6) 

Proof .  One simply applies (3.74) and the Chebyshev inequality. II 

In the following lemma, we shall extract results from Corollary 3.7. It 
states that the averages of local field at two different scales should be 
almost the same with very high probability. 

L e m m a  4.4. Suppose that the initial condition satisfies that 
II ~' II 2-, ~< const. Then 

sup E*{ I(091 -a/12 * t//)(x, t) - (co t -a/24 * (/))(Y, x) l  > N -a/24 } 
A 

< exp( - c o n s t .  N ~/12) (4.7) 

Here 6 is chosen as in Corollary 3.7 and A is defined by 

A = { I x - y l  + I t - s l  < N-6/24; � 8 9  10; � 8 9  10; Ixl + lYl < 10} 

Proof .  Suppose that instead of I1r ~<const we have I[~,llg~<const. 
Let n be the function given by Corollary 3.7. Then for t < t l  for some tl 
fixed 

E ~ I- II ~ - n II 2_ 1( t ) > N -  a/6 ] ~< exp( - const �9 N ~/8 ) (4.8) 
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By the Schwartz inequality 

I [(~b- n) * ~l -a /12](x ,  t)~< [l(~b-n)(/)l1-111~o1_~/1=(x + ")iLl 

~< const - N 6/8 II~ - nil -1 (t) (4.9) 

Here we have used the fact that 

Ilcol- a/x2ll a ~< const �9 [(N-a/12) -2 .Nan2]l/Z=const .N ~/8 (4.10) 

Hence 

E~'{ I ( ~ -  n) * Ogl_~n2(x, t)l > N  -~/24 } ~< e x p ( - c o n s t  .N 6/12) (4.11) 

Similarly, the same bound holds if 6/12 is replaced by 6/24. Note  that 
in the range of (x, t) we are interested, n(x, t) is a smooth function 
(Corollary A.2). Lemma4 .4  follows by taking the intersections of 
events {1r 1-6/12 * ( ~  - -  n)(x, t)[ < N -6/24 } and {1r di/24 * ( ~  - -  n)(y, x)[ < 
N-a/24}. 

Finally we have to remove the condition IIr by 
I1r < const. But this follows from Lemma 4.3 and simple stropping time 
arguments. II 

Our  strategy to prove Theorem 4.1 is to use Lemma 4.4 inductively for 
all scales. For  this purpose, we have to check condition IlqJl1-1 ~< const after 
rescaling. The following lemma will be used in relating norms in different 
scales. 

L o m m a  4.5.  Define the scaled norm Ilull~,~ by 

Ilul12 - f f f  _,,p- u(flx) u(fly) K(x, y) dx dy 

fI u(x) u(y) K(x/fl, y/fl) dx dy fl-2 (4.12) 

Here K =  K,  is defined in (2.26). Then for fl < 1 one has the bound 

Ilull 2_ ~.p ~< 2 Ilull ~x/~-3 (4.13) 

Proof. By variational principle (at = 1 in K,  for simplicity) 

Ilull2__l.o=sup{f u( ,x)v(x)e-~ [(Ov/Ox,2+v2(x)]dx} 

Changing variables #x ~ x, #2v(x/#) = w, 

Ilull2_,.t3=fl-asup{~u(x) w(x)e~ [(Ow/Ox)2+fl-2w2(x)]dz} 
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Let Z = w exp[ -O(x/~) + 0(x)] ~< w. Then 

9 +;~2<~2\0x/ + 2//-2wZ ~< 2 +f l  L\Ox) 

Hence 

I[u112 , ,~</~-3 supz f u(x)Z(x)e - ~  d x - l - f  Lk~x/ Zz] dx 
Ilul12-, I 

Together with (4.9) we have the following result. 

C o r o l l a r y 4 . 6 .  Suppose that II~ll~t~<const. Then there is a 
constant Ct such that for 1/2 < t < 10 

Er IIr 2__ 1,N-6/124 > Cl } < exp( - c o n s t .  N ms) (4.14) 

Here 5 is chosen as in Lemma 4.4. 

Proof. As in the proof of Lemma4.4,  let us first assume that 
II~bllo2~<const. Then (4.9) holds. Hence by (4.13) we have (4.14) and 
this concludes Corollary 4.6. To replace the assumption I1@11~< const by 
II~bll2_l~<const one can employ the stopping time argument as in 
Lemma 4.4. II 

Note that t has to stay away from zero because a stopping time argu- 
ment as in Lemma 4.4 has to be used. Corollary 4.6 asserts that starting 
from the boundedness of I1-11-1 at time t = 0 ,  one actually obtains the 
boundedness of I1" II- ~ in smaller scale at later time. So we can repeat this 
argument to conclude II-II- 1 is bounded for all scales. One technical point 
is that the improvement in the II-II - ,  comes only after some period of time. 
But it is an easy consequence of Corollary 3.7 that the I1" II _l( t)  will not be 
worse than [1" II - , (0 )  for 0 < t ~< 1. More precisely, since I1~112 ~ is bounded 
for time O<t<exp(N ~/4) for some 5 > 0  by Corollary4.2, we have by 
Corollary4.6 that 11~ll2_l.N-o~, is bounded for all time t with � 8 9  
exp(N~/4). Now we can apply Corollary 4.6 again at the scale N -~/24 and 
conclude that ~b has to be bounded in the scale N-~ -~ By 
repeating this procedure one concludes that ~b is bounded for arbitrary 
small scale for time, say, 1 < t <exp(N'/4).  Without further assumption on 
initial data, we should not be able to conclude the boundedness of 
I1~11-,.u-, for the initial layer 0 < t < 1. However, if one makes assumption 
on initial data, it is easy to check by Corollary 3.7 that it does propagate 
for a finite time. Hence we have the following lemma. 
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L e m m a  4.7 .  
some z > 0 

Suppose that  the initial condition ~, satisfies that  for 

sup Ilzx~'ll- , .u- '  ~< C~ (4.15) 
x 

Then there is an e > 0 so that  

P~'{ sup sup []zx~(t)[)2_ l.u_, > C2} < e x p ( - N  ~) (4.16) 
0 < t < cxp(NT/4 )  x 

for some constant C2. 

Proof. Let us first prove (4.16) with supx and sup, outside P~. This 
indeed is just a corollary of Lemmas 4.1-4.6 as explained earlier. 

We now move the sup t and sup x inside the probability.  For  sup x 
this is trivial because the dependence of ~b on x is discrete with x = i/N and 
the probabi l i ty  is exponential ly small in N. Hence we are allowed to take 
N unions without  changing the order of magni tude of the probability.  To  
move the sup t inside is slightly harder,  as t is continuous. Again because 
the probabil i ty  is exponential ly small, we are allowed to take unions of 
events with the number  of events smaller than, say, e N'/2. Therefore 

P{sup  sup [['c.~(~(jexp[-e/4])ll2_l.N-,> C} < e x p ( -  C2 N~') 
x O < j < e x p [ N r / 2 ] , j e ~  

To conclude (4.14), it remains to prove some very weak continuity of 
II~(t)l[2 LN_,. By L e m m a  4.2 and I to 's  formula 

P{ sup I II~xq~(t,)[I- LN- ' - - I l rx~( /2) l l -  l.u-,I > e }  < exp( - -  C2 Nr)  
I t l  - -  t21 < e x p (  - -  N "//4) 

0 < t i  < e x p ( N  7/4) 

This provides the continuity needed to prove (4.16). I 

Remark. This proof contains two arguments we will use several times 
in this paper.  The first one is to remove the restriction on small t by 
arguing independently for small t with the help of assumptions on initial 
data. The other  concerns moving sup of x and t inside. Because these 
arguments  are all similar in all contexts in this paper,  we shall not repeat  
them later. 

k e m m a  4.8.  Suppose ~b satisfies (2.1) with periodic boundary  con- 
dition. Suppose the initial data  ~b satisfies that  limb II ~ ~< const. Then for any 
positive constant  q > 0 there is a to > 0 such that  for fl small enough and 
some a > 0  ( ~ = N - '  XT=l Sj) 

Eq'[  sup sup)(ah_a,q~)(x,t)-~l>q]<exp(-N~) (4.17) 
to < t < cxp (  NV/4 ) x 
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Proof .  Recall first the bound (4.11). Note that for n satisfying (3.11) 
with periodic boundary condition there exists a to > 0 such that 

sup sup In(x, t ) - n ( y ,  t)[ <to/4 (4.18) 
t o < t <  lOOto x , y  

See Corollary A.2 for a proof of (4.18). Together with (4.11) we have 
proved (4.17) for to < t < 100t0. To extend (4.17) for all time, one can use 
Lemma 4.2, which ensures that the assumption IIr <const  holds if we 
start from any t < exp(const-N). This proves Lemma 4.8. II 

P r o o f  o f  T h e o r e m  4. t. By Lemma 4.7 we have that the assumption 
of Lemma 4.4, namely II J~ It 2-- 1 <~ const, holds for all scales bigger than N ~- 1. 
Hence its conclusion holds up to that scale. This implies that 
1o91-6 * ~(x, t) - (co~ _~ �9 ~)(x, Y)I < N--" for some z > 0 with probability 
1 - e x p ( - N  ~) for some y >0.  (Here 6 is chosen as in Lemma 4.4.) In other 
words, we have related the local density for scale N ' - 1  to scale N -6 with 
6 a small positive constant. So in order to prove (4.3), it suffices to prove 
that for any q > 0 

P{ sup sup 1(o91_ ~ * f/))(x, t ) - u ( x ,  t)l >q} < e x p ( - N  r) (4.19) 
0 < t < exp(NT/4 )  x 

Clearly, (4.19) holds for t > to  by (4.7) and (A.9). For 0~<t~<to, (4.19) is 
just a corollary of Corollary3.7 and the Chebyshev inequality. This 
concludes Theorem 4.1. II 

5. P R O O F  OF T H E O R E M  1 

We have proved Theorem 4.1 in Section 4 by using large-deviation 
bounds, especially Corollary 3.7 from Section 3. Theorem 1 is the corre- 
sponding version of Theorem4.1 in the long-range models (taking into 
account the remark after Theorem 1 which replaces the Hamiltonian H by 

). Though its assumptions (ii) and (iii) appear different from assumptions 
A and B of Theorem 4.1, they are equivalent. Hence it is natural to try the 
same approach. Indeed, we can follow the same proof without too many 
modifications. Let us first extend results in Section 3 to long-range models. 

First of all Lemma 3.2 holds if we make the following changes. 
Equation (3.11) has to be replaced by 

c3,n(x, t) = [h ' (n (x ,  t)) + g ' (n (x ,  t ))  - ( J  �9 n) (x ,  t)]xx (5.1) 

where g is the function in (2.22). In the definitions of gl and g2 (3.15) and 
(3.16), the Hamiltonian H has to be replaced by H0 of (2.22). Finally, we 
choose 6 = ~ with N ~ denoting the range of ~ in (2.22). As the boxes in the 
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definition of H '  are disjoint, the integration in the definition of G; [before 
(3.15)] has to be interpreted as a sum over these disjoint boxes rather 
than integrating over overlapping boxes. Similar interpretations have to be 
imposed also in the proof of Lemma 3.2. With these interpretations and 
modifications, Lemma 3.2 holds with the same proof. 

Next Lemmas 3.3-3.6 hold without change. 
Note that in (3.66) we have to use a spectral gap for product measure 

with constraint ~b , .=cons t .  For long-range models, Corollary6.3 
provides a bound on the Dirichlet form relative to e x p ( - H o - H ' )  which 
is a product measure with constraint Z ~bl = const when restricted to a box 
of size N T. So we return to the same problem as in the product case with 
constraint Y'. ~bi = const. Indeed, the purpose of Lemma 6.2 is to avoid the 
discussion involving the spectral gap for long-range models, which, even 
though it is correct, requires a proof. The long-range nature becomes 
significant only in the bound (3.56), which affects (3.62). By Corollary 6.3, 
q is bounded by N 2-2a [a defined in (2.3)]. Hence e in (3.62) is equal to 
2a and the condition 6 ~< e/5 is satisfied by our choice 

6 = "r = a/20 (5.2) 

Therefore, Corollaries 3.7 and 3.8 hold. 
Finally we sketch modifications needed for the argument in Section 4. 

First of all, all results concerning differential Equation (3.11) have to be 
proved for (5.1). This will be done in the Appendix. Besides this, almost all 
results in Section 4 depends only on Corollaries 3.7 and 3.8 and can be 
proved in the same way. One can check that the large-field cutoffs from 
Lemmas 4.2 and 4.3 hold for a very general class of models and, in par- 
ticular, the long-range model we consider. Lemma 4.4 is just a corollary of 
(3.72) and the Chebyshev inequality. Lemma 4.5 concerns a general fact of 
the HI norm and is independent of dynamics. The next step in Section 4 is 
the rescaling and repeating the same argument. It should be emphasized 
that the range of interactions N a increases after each rescaling. Hence the 
constant q in (3.56) decreases because of the bound (6.31). Therefore one 
has a better estimate after each rescaling. This shows that the long-range 
interaction H L does not affect the proofs in Section 4. 

One may worry about the effect of the Hamiltonian H '  of (2.22). But 
the role played by H '  is indeed minimal and is used only to keep the local 
average of field ~ a .  ~b away from the unstable region ~oa. ~b/> _m-e~/2 
[(2.17), (2.24)] for 6 of the order a with N a the range of the interaction. 
Once we have proved (2.21) for scale up to N ~, we can simply drop the 
term involving aH'/O~k because the combined contribution of aH'/Oq~ in the 
terms S'2l and g22 [(3.20), (3.21)] is of definte sign (by the convexity of g) 
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and the local average of field Ogq �9 ~b is now in the region _m - eJ2. For  scale 
bigger than the range of interaction N a, one uses the choice (5.2). The 
proof has just been explained in the previous paragraph. This concludes the 
proof of Theorem 2.1. 

6. ENTROPY PRODUCTION IN Z a 

As explained in Section 4, we have to rescale the system (2.1) many 
times. After such rescalings, we are practically in infinite volume. Since we 
base our method on the Dirichlet form and entropy, we need a bound on 
entropy productions for the infinite systems. This has been done by Fritz ~ 
for zero-range models. We shall reprove Fritz's result with a slightly better 
bound for short-range models. It will then be extended to long-range 
models. In order to focus the discussion on central issues, we shall consider 
only the lattice [ 1, M]  c ~ with all estimates uniformly in M. Certainly all 
results in this section can be generalized to Z a. 

Let/~ be the Gibbs state with the Hamiltonian 

M 

H =  ~ V(~b,.)+F(~,, ~i+l) (6.1) 
i = 1  

with F being a bounded function. Suppose that f ,  solves the forward 
equation 

O,f,=Lf, (6.2) 

with L = L* given by the Dirichlet form 

i ~ l  

(6.3) 

Denote by ~ the a-field generated by ~b~ ..... ~bj and by f j  the conditional 
expectation with respect to ~ ,  namely 

f;  = EU[fl  ~;] (6.4) 

For the potential V we shall assume throughout this section that 

lim [I V'(r 2 + 1r162 < oo (6.5)  
I~1 --* ~o 

One immediately checks that for any i > 0 

j - 1 log EU[exp {~5(OH/O~i - a) } ] ~< const �9 6 (6.6) 



Metastabil i ty of GL Model wi th  Conservation Law 731 

where a = EU[aH/ad?i]. The bound (6.6) is interesting only when 6 is small. 
To prove it let 1=6-" and decompose the expection into I~,1 ~ l  and 
I~,1 > L In the region I~,1 >/ ,  the expectation in (6.6) is bounded by e-C1, 
which is negligible when 6 ~ 0. For the region I~gl ~< l one can expand the 
exponential and checks that (6.6) holds. 

An important corollary of (6.6) is that for any density f relative to # 
one has the following bound by the entropy inequality: 

EU[f ; OH/&k,] <~ 3-1 log EU[exp{ 6(OH/&ki- a)} ] + 6- ~ S(f/#) (6.7) 

Here the entropy S(J]/~) is defined by 

= f f log f dlt (6.8) S(f/l~ ) 

Optimizing 6, one has that 

EU[f ; aH/&k,] 2 <<. const- S(f/lt) (6.9) 

This bound holds in very general situations as long as (6.6) holds. Let Sj 
be the entropy of f j  relative to/a, i.e., 

S j=  S(fj) = EU[ f  log f j ]  (6.10) 

Define the specific entropy by 

s(f) = N - 2  ~. e-~ (6.11 ) 
j = l  

with 0 given by (2.26). 

T h e o r e m  6.1. (3) Suppose f ,  satisfies the forward Equation (6.2). 
Then the entropy production of f ,  satisfies 

ds(ft)dt j Ii~=i ] <~-Y'. EU{[(a,--O~+l)fj]2fj -1} e-~ (6.12) 

Proof. By definition (6.10) the entropy production is 

dt ~Lf l~  f d fj fT ,  dkt (6.13) 

Clearly, the last term is zero. So we can write the entropy production as 

as,= -N= ~, f [(oi-Oi+,)f]E(oi-Oi+l)L]f;  ld~ dt 
i = 1  

= --N' ~ EU{(c?,--O,+l)f[.~j}{(O,--Oi+l)fj}f7 '] (6.14) 
i = 1  

822/74/3-4-18 
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By definition of fj ,  

(O,--O,+,)fj=E[(Oi--O~+,)flo~]--E[f;(O,--O,+l)Hl~] (6.15) 

where 

E[a; b l ~ ]  =E[ablo~] - E [ a l ~ ]  E [ b l ~ ]  

In particular, since H is nearest-neighbored, 

( G -  G+ , )fj = EE(Oi- 0,+, ) f l  ~2 ,  

Therefore, we can rewrite (6.14) as 

(6.16) 

i<~j-2 (6.17) 

ff ~ = --N 2j [(O,--O,+,)fj]2f] -l dp+~j 
i = l  

where Oj is defined by 

J 
s  2 

i = j - -  1 
E" {E"E(G-  0,+t ) f l  ~ ] [ ( G -  0i+1 ) f ] ]  f]-- 1 } (6.19) 

EU{EU[(G- G+, ) f l  ~ ]  z f 7  ' } 

EU{E"[(Oi- O~+ ~)fl N ]  E[f; (a,- 0,+ , )HI N ] f ; '  } 

(6.20) 

The first term on the right side of (6.20) is negative. The second term 
can be bounded by the Schwartz inequality as 

J 
Q)<~N 3 ~ EU{EU[(O,-Oi+,)flo~]2f] -'} 

i = j - - I  

J 

+e-'N 2 E"{EU[f;(3,-3,+t)HlN]2ff '} 
i = j - - I  

for all e>0 .  Since for i<~j<k-3, 

(6.21) 

E" [ ( a , -  a,+, ) f l ~ ]  2 = E"[E,[(a,- a,+, ) f l  ~ ] 1 o ~ ]  2 

= E~' [ ( 0 i -  O,+, )f~ I ~j]  2 

<~ EU[ {(O,-G+ ,)fk}2 f [ ' Io~]f j  (6.22) 

J 

QJ = - N 2  L 
i = j - -  I 

J 
+ N  2 

i = j - I  

(6.18) 

By (6.15), we can decompose 12j as 
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the first term on the right side of (6.21) is bounded by 

j j - t -N 

2~N 2 ~ ~" E~'[{(Oi--Of+,)fk}2f~ ~] (6.23) 
i = j - -  1 k = j + 3  

The second term is slightly harder. We shall only bound the i = j term. 
The other term is similar. By definition (i=j),  

E~'[f;(O,--ai+,)Hl~j]=E~'[f~+3;(a~--a,+,)Hl~] (6.24) 

Let u=f j+3/f j .  Then u is a probability density relative to E u [ . I ~ ] .  
By (6.9) 

EU [fj +3; (ay - 3j +, ) n l .~] 2 f f 2  ~< const �9 E" [f j  +3 log(fj + 3/~) ] ~j-I f f '  

(6.25) 

Hence the last term in (6.20) is bounded by 

const �9 e - 1N 2EU { Eu [f j  +3 log(fj + 3/fj) I ~j ] } 

= const �9 e -  ~N2(Sy+ 3 - Sy) (6.26) 

To summarize, we have proved that 

j - - 2  

~ < ~  E E"{[(O,-O,+,)fJ]2fJ -' } ~ N 2 

i = l  

j j + N  

+2eNZ E . E EU{[(O~--O,+,)fk32f; '} 
i = j - I  k = j + 3  

+ const- ~ - IN(Sj+ 3 - Sj) (6.27) 

Theorem 6.1 follows by multiplying (6.27) by N-Zexp[ -O( j /N)]  and 
summing over j and choosing e small enough. Note that the factor N in the 
last term of (6.27) disappears after the summation by parts in j. II 

Remark. The previous proof works also for d~> 1 with the following 
modifications. In (6.19), the summation over i becomes over the boundary 
of cubes of size i. The first term on the right side of (6.20) can be dealt with 
in the same way. For the second term, we replace the right side of (6.24) 
by Eu[jT,.; (Oi-Oi+l)nl~j]  with f , .=EU[fl .~].  Here ~ denotes the 
a-field generatedby ~ and ~b, with Ik - il ~< 2. One can then follow the rest 
of the proof to conclude Theorem 6.1 for d/> 1. 

We now return to the case that/~ is given by the Hamiltonian H in 
(2.22). An entropy production bound similar to Theorem 6.1 still holds 
with a similar proof. Our goal is, however, to bound the entropy produc- 
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tion relative to the short-range equilibrium state. To be more specific, 
let dv be the Gibbs state with the Hamiltonian H, and denote the 
Radon-Nikodym derivative by 

Let g =f/h and let 

h = dv/dp = exp(HL)/normalization (6.28) 

& = E ' [ g  I ~ ]  (6.29) 

Define the entropy S(gj)= S(gJv) and the specific entropy 

s(g/v)= N -2 ~ e-Z~ (6.30) 
j = l  

I_emma 6.2. Suppose that f ,  satisfies the forward equation (6.2) 
with H replaced by /4. Then with the previous notation the entropy 
production is bounded by [g = g, = g(t)] 

ds(t) ds(g(t)/v) 
dt dt 

<~ - 4  ~=1 e -2~176 [(Oi-Oi+l)gi]2g7 l dv 

const, s(t) + const. N z- 2~ f II ~b [I ~g dv (6.31 + ) 
J 

Here a is the range of interaction in (2.22) and I1"11o denotes the norm 
in (2.27). 

Then 

Corollary 6.3. Suppose, in addition, that 

E: { f ~ llq~ll~(s) ds} ~< const 

oo "-- ~1 
s(t) +-~ j~l= J~',=, e -2~ jo ds f [(O,-O,+ l) gj(s)]2 gi(s) -I dv 

~< [const.  exp(const �9 t)] Is(0) + N 2 - 2~] (6.32) 

Remark. The Hamiltonian /-) really has two long-range parts. In 
Lemma 6.2 we assume that H '  of (2.20) vanishes. Lemma 6.2 also holds 
with the same proof if we define dv in (6.28) as the Gibbs state with 
Hamiltonian Hs + H' .  



Metastabil i ty of GL Model wi th Conservation Law 735 

Proof. Step 1. Recall that g, satisfies the equation (18) 

ag, 
O---f= L,*. g, (6.33) 

where L* is defined by the identity 

f ~(L*,) dv = f (L~)q dv (6.34) 

Hence we can compute the entropy produce (gj(t)= (g,)j = E'[g,l~j]) 

d s (gj!t-"'~)) : f L*g(t)log gi(t)dv+ fg(t)I'dgj(t)xl -1 ~----~) gj dv (6.35) dt 

The second term on the right side vanishes as in Theorem 6.1. For the first 
term we integrate L* by parts to have 

f L*g(t) log gj(t) dv = f g(t)[L log gj(t)] dv 

= f g(t)[L log &(/)]h d~ (6.36) 

From now on, we shall omit the t variable. By definition of L, the last term 
is equal to 

- N z ~ f [(Oi-  O,+l )(gh)] [ (0 r -  0,-+1) gj] gf-~ dl~ =/21 +/22 (6.37) 
i 

where/21 and/22 are given by 

/2' = -N2 ~ I [(O~-O~+~)g][(O~-O,+,)gj]gf-' dv (6.38) 
i = 1  

/22 = - u  2 ~ f g[(O,-O~+~)logh][(O~-O~+,)gj]g 7 'dr  (6.39) 
i ~ l  

Note that the long-range contribution appeared only in log h. Also, v is a 
product measure. We can thus bound/21 as in Theorem 6.1. Our remaining 
task is to bound O z . 

Step 2. We now bound/22. First we decompose/22 =/23 +/24 with 
/24 denoting the i=j  term in (6.39) and/23 denoting the rest, namely, 



736 Yau 

123 = - N  2 '~ f dv EV[ { (0 ; -  0;+1 ) log h } giN] [(o;- 0,+1 ) gj] g}-' 
/ = 1  

(6.40) 

12,= --N2 f dv EV[{(Oj--Oj+l)logh} glN][(Oj--Oj+~)gi]gf ~ (6.41) 

By the Schwartz inequality we can bound ~3 by 

j - I  

I23<~6N 2 ~ ~dv[(Oi-Oi+l)gj]Zg~-'dv+12, (6.42) 
i = 1  

where Q5 is defined by 

j - I  

t2,=6-'N 2 y" fdvEV[{(O~--Oi+t)logh}g[N]2g71 (6.43) 
i = l  

Again by the Schwartz inequality ~s is bounded by 

j - I  

g25 <~6-1N2 ~ f dv E~[{(O,-O,+~)l~ E~[glN]  gT' 
i = 1  

j - I  

=6-1N 2 ~ f {(O,-Oi+l)logh}Zgdv (6.44) 
i = 1  

We now bound the boundary term ~4. By the identity (6.15), we can 
replace (0~- 0i+ j) gj by 

EVE(O,- 0,+1) gk IN]  - Eq- V'(~j+, ), gj+ z IN]  

for any k>~j+2. Hence we can write g24 =I26 +f27 with 

j + N + 2  

(26=N y' Ie~[{(Oj--Oi+tllogh}glN][(Oj--Oj+~)gk]gT'dv 
k=j+z " (6.45) 

07= --N2 f E~[ { (Oj--Oj+ ,) l~ h} g i N ]  Ev[ V'(r ~); gl N] g} -l dv 

(6.46) 

By the Schwartz inequality ~6 is bounded by [cf. (6.44)] 

126<~6 ~ {(~j-Oj+~)logh}2gdv+N2f {(Oj-Oj+,)g,~}2g~ldv 
k = j + 2  

(6.47) 
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Similarly, 12 7 is bounded by 

r ~<e-3 f {(aj-aj+,)logh}2gdv+~2s 

with I2s given by 

a s  = m f E ' [  V'(q~j+ t); g l~]2g f  ' dv 

~< const. N[S(gj+ l Iv) - S(g j l  v)]  

Here we have used (6.9). 
To summarize, we have bounded 122 by 

j - - I  

CI2<~6N 2 y'. f [(ai-a,+,)gJ]2g7 'dr 
i = l  

j + 2 + N  

+6N ~ f [(aj-aj+,)g,]2g#'  dv 
k = j + 2  

j - - I  

+N 2 ~ f [(Oi-ai+l)l~ dv 
i = 1  

+ N3 f [(Oi-Oi+l)logh]2gdv 

7 3 7  

(6.48) 

(6.49) 

+ const. N[S(gj+ l/v) - S(&/v)] (6.50) 

Combining steps 1 and 2, we have a bound on the entropy Step 3. 
production dSi/dt. As in the proof of Theorem 6.1, we multiply this bound 
by N -2 e x p [ - 0 ( j / N ) ]  and then sum over j. By choosing 6 small, we arrive 
at 

ds(t) < _ e -~ [(d,-O,+,)gj]2gf I dv 
dt "~ j i=l 

+ c o n s t . N  ~ f [(cgj.-cgj+l)logh]2g dv 
y = l  

+ const- s(t) (6.51) 

Note that we sum over i up to j -  1 in the first term of (6.51) as compared 
with summing up. to j -  2 in (6.27). This is because v is a product measure 
here but has range 1 in (6.27). By the definition of h we have 

N ~ e-~ (6.52) 
j = l  
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where a is the range of interaction defined in (2.3) and I1" Iio is defined in 
(2.27). Therefore, the entropy production is bounded by ( g =  g,) 

ds(t) 1 ~ j -  l 
<~--~ E E e-~ [(Oi-Oi+l)gjj2gT' dv 

j = l  i = 1  

+ const, s(t) + const. N 2- 20 f I[~bll 2g dv (6.53) 

This proves Lemma 6.2. II 

A P P E N D I X  

In this Appendix we collect some results for differential equation (3.2). 
Since they are well known if the J �9 n term is dropped, we shall only give 
a sketch of the proofs. 

I . emma  A.1. Let n be a solution to the equation in R 

n,= ( a ( n ) - J ,  n) .... 
(A.1) 

n(0, x) = no 

where a and J satisfy for some e > 0 

e -~ > a ' >  1 + e = f J ( x ) d x  (A.2) 

Then we have the following bounds provided that a in (2.26) is chosen 
small enough: 

13 T 

Ilnll~ + 2  fo Ilnd2(t) dt <~ C exp(CT)Ilnoll o 2 

IJnxl[ o2(T) + 2 for IIn,ll~ dt <~ CT- '  exp(CT)[[noll 2 

Here the constant C depends on e, ct, and 0 [defined in (2.26)]. 

(A.3) 

(A.4) 

ProoL Multiply (A.I) by ne -z~ and integrate over the space 
variable 

l d  2 
2& f n d x = f  n(a(n)-J*n)xxexp[-20(otx)]dx (A.5) 
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Integrate the right side by parts, 

l d f  -2o(~,) f , 2dt n2e d x = -  n.~[a(n)n.~-J.nx]e-2~ 

+ 2~ f n[a'(n)nx- J* nx] O'(x) e-2~~ dx (A.6) 

By assumption (A.2), the first term on the right side is bounded above by 

- e  f n~ exp[ - 20(ctx)] dx 

By Schwartz's inequality, the second term is bounded by 

ct const. ([Inxllo2 + Ilnllo 2) 

Choose 0t small enough. Using these bounds and Gronwall's inequality in 
(A.6), we have 

IIn(T)ll 2 + 2 I :  Ilnxll ~ dt <~ exp(const �9 T) Ilnoll~ 

Here the const depends on ct, 0, and e. This concludes (A.3). 
To prove (A.4), let us multiply (A.1) by (a (n ) - J*  n), exp[-20(c tx)]  

and integrate the space variable, 

f n,(a(n)- * n),exp[ J dx 

d t 
- dt f 2 (a(n) - J * n)~ exp[ -20(~tx)] dx 

+ 2~ f ( a (n ) - J , n ) , ( a (n ) - J*n )xO ' ( x ) exp[ -20 (~ x ) ]dx  (A.7) 

Here we have integrated the x by parts. The left side of (A.7) is bounded 
below by 

f 2 dx e x p [ -  20(~x)] /3 /'1 t 

The second term on the right side of (A.7) is bounded above by 

~ const. [lln,llo2 + II(a(n)-J* n)xl[~] 
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Using these bounds and choosing ct small enough, we have by the 
Gronwall inequality 

g r 

II(a(n) - J * n)x[Io~(T)+~f s IIn,ll ~ dt 

~<exp[const. ( T - s ) ] l l  ( a ( n ) - J ,  n)xllo2(S) (m.8) 

By (A.2), I l a ( n ) - J *  n)xllo 2 is equivalent to Ilnxllo 2. Finally we can integrate 
s from zero to T/2 and use (A.3) to have (A.4). II 

C o r o l l a r y  A.2. Suppose n is a solution of (A.1) with the initial data 
no satisfying Ilnot[o2 <const. Suppose that the space dimension d =  I. Then 
at any time t > 0, n, is a smooth function. 

Proof. From (A.4) and the Sobolev inequality we have that n(t) is 
H61der continuous. We can now follow the usual approach for parabolic 
equations to conclude the smoothness of n. Strictly speaking, this argument 
is not rigorous, because Lemma A.1 is only an a priori estimate. It is not 
hard, however, to provide a rigorous proof based on these a priori 
estimates (A.3), (A.4) with usual arguments for parabolic equations. II 

C o r o l l a r y  A.3. Let n be a solution to (A.1) with periodic boundary 
condition and Ilnllo ~<const. Then for any 6 > 0  there is a t o > 0  such that 

sup sup In(x, t ) - ~ l  ~<6 (A.9) 
t>~ to X 

ProoL We follow the procedure for proving (A.3), but without the 
extra factor exp[-20(~tx)] ,  since we are now in a finite volume. Hence we 
have the bound 

l d  
2 dt Ilnll~ ~ -~  Ilnxll~ (A.10) 

Similarly, by arguing as in (A.7), we have 

l d  
11,,[Io2 ~ < - ~  I I ( a ( n ) - J *  ,)xll g 

Integrating it from s to T, we have 

T 

l nLIIo2(T)+f IIn,ll2(t)dt<~ �89 n)xllo2(S) I I (a(n)-  J * . 
~s  
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In t eg ra t ing  s f rom 0 to T/2 a n d  us ing  (A.10) (its i n t eg ra t ion  form),  we have 

T/2 
1 ~ l l ( a ( n ) - J *  n)xllo(T)<~ T -1 [ I I ( a ( n ) - J *  n) . , l l02(s )ds<<,e- 'T- '  Ilnll02 

" 0  

Since I I ( a ( n ) - J ,  n)xl[~ >~const .  Ilnxll02, we have proved  tha t  

Llnxl102( T) ~< const  - T - '  Ilnll 02 (A.11 ) 

Clearly,  Coro l l a ry  A.3 follows from (A.11). 
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